1026 Notizen

Torsion-Torsion Interaction in the Microwave Spectrum of Dimethylether

H. Lutz and H. Dreizler

Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

(Z. Naturforsch. 31 a, 1026 – 1028 [1976]; received May 10, 1976)

We report an analysis of the torsional fine structure of rotational lines of $(\mathrm{CH_3})_2\mathrm{O}$ in excited torsional states leading to the potential parameters V_3 and V'_{12} of a Hamiltonian for the overall- and internal rotation.

The microwave rotational spectrum of dimethylether, (CH₃)₂O, was recorded in the region from 8 to 40 GHz with a conventional microwave spectrometer ^{1, 2} equipped with an 8 m-absorption cell and employing 33 kHz-Stark-modulation. The sample

pressure was about $10\,\mathrm{mT}$ and the temperature approximately $-50\,^\circ\mathrm{C}$. The $(\mathrm{CH_3})_2\mathrm{O}$ was supplied by Fluka GmbH, Neu-Ulm.

The ground state spectrum of $(CH_3)_2O$ has been assigned earlier 3 . Additional lines of the ground state were measured by F. J. Lovas 4 , as the molecule is of radioastronomic interest. We measured six rotational transitions, which appear as quartets of both the excited torsional states $\tilde{v}=1_1$ and $\tilde{v}=1_2$ 5 . They are given in Table 1. The Hamiltonian for the torsion and overall rotation is invariant to the group $C_{3v}^{\circ} \otimes C_{3v}^{+6}$, 7 . The torsional substates may be specified by the group $C_{3v}^{\circ} \otimes C_{3v}^{+}$ as follows:

$$\begin{split} \tilde{v} &= \mathbf{1}_1: \bar{\sigma}: \mathbf{A}_1 \mathbf{A}_2, \mathbf{EE}, \mathbf{A}_1 \mathbf{E}, \mathbf{EA}_2, \\ \tilde{v} &= \mathbf{1}_2: \bar{\sigma}: \mathbf{A}_1 \mathbf{A}_2, \mathbf{EE}, \mathbf{A}_2 \mathbf{E}, \mathbf{EA}_1. \end{split}$$

The spin statistical weights of the components of the measured quartets result as $^{5-7}$:

transitions.

The assignment of the quartet lines was made by their Stark-effect and by observing the intensity ratio given by the spin weights. Furthermore transitions in the torsional state $\tilde{v}=\mathbf{l_1}$ appeared stronger in intensity than those of $\tilde{v}=\mathbf{l_2}$.

The rotational constants of the A_iA_j -species rotational lines for both excited states are calculated by a least square fit using rigid rotor approximation. Only lines up to J=4 were used. The results are given in Table 2. Similar measurements on $(CD_3)_2O$ were reported recently ⁸.

The analysis of the torsional fine structure is based on a Hamiltonian given in 5 . As adjustable parameters were taken the hindering potential V_3 , the potential interaction parameter V_{12}' and the angle ϑ between the methyl top and the b axis. The numerical evaluation used a computer program MELIT, written by Trinkaus 5 and Tan, which we adapted to the TR 440 of the Hamburg and the PDP 10 of the Kiel computer center. The v-diagonalisation is made to second order by a van Vlecktransformation aiming at the combined $\tilde{v}=1_1$ and $\tilde{v}=1_2$ torsional submatrix. The effective rotational

Reprint requests to Prof. Dr. H. Dreizler, Institut für Physikalische Chemie der Universität Kiel, Abteilung Chemische Physik, Olshausenstraße 40-60, *D-2300 Kiel*.

hamiltonian matrix is diagonalised by a Householder procedure. The least square fit was made to the experimental splittings $\varDelta\nu\,(\mathrm{EE}-\mathrm{A}_i\mathrm{A}_j)$, $\varDelta\nu\,(\mathrm{A}_i\mathrm{E}-\mathrm{A}_i\mathrm{A}_j)$, and $\varDelta\nu\,(\mathrm{EA}_j-\mathrm{A}_i\mathrm{A}_j)$ simultaneously. The parameters are given in Table 3, the calculated $\varDelta\nu$ in Table 1. The accuracy of the calculation was checked by variing the number of torsional basis functions according to Trinkaus et al. 5 . The fit was made with $v_{\mathrm{max}}=8$. Using the resulting parameters the mean square deviation of the splittings does not improve significantly when using $v_{\mathrm{max}}=9$. The correlation of the three fitted parameters is low.

When we had finished this work we noticed an independent work of Hayashi and Imachi 9 . Their V'_{12} value, calculated by an approximation proposed by Hoyland 10 , agrees with ours in the error limit, the V_3 values are different. But we believe that our analysis of the torsional fine structure and the evaluation of V_3 and V'_{12} is less approximative, as we used the complete Hamiltonian. The results of this work differ also from those given in 8 as the approximation of the evaluation procedure and the selection of torsional states is different. The differences exceed the standard errors.

We thank Dipl. Phys. B. Tan and Prof. Dr. H. D. Rudolph, Ulm, for supplying us a new version of the MELIT-program. Part of the calculations were

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

$J_{K-K_+}-J'_{K'}$	K'_+ \tilde{v}	σ	exp. frequency [MHz]	exp. splitting $\Delta \nu_{\text{exp.}} = \nu_{\Gamma\Gamma'} - \nu_{\text{AA}} * [\text{MHz}]$	calc. splitting $\Delta v_{\mathrm{calc.}}$	error $\Delta v_{\rm exp.}$ $\Delta v_{\rm calc.}$
	*				[MHz]	[MHz]
1 ₀₁ -1 ₁₀	1,	A_1A_2	29 929.979	0.0		
		$\mathbf{E}\mathbf{E}$	29 957.060	27.081	27.05	0.03
		A_1E	29 977.927	47.978	47.74	0.24
		EA ₂	29 990.262	60.283	60.38	-0.10
	1_2	A_2A_1	29 900.276	0.0		
	-	EE	29 926.222	25.944	25.82	0.12
		A_2E	29 946.153	45.877	45.66	0.22
		EA_1	29 958.051	57.775	57.46	0.31
$2_{02} - 2_{11}$	l_i	A_1A_2	31 121.932	0.0		
		$\mathbf{E}\mathbf{E}$	31 147.428	25.496	25.46	0.04
		A_1E	31 170.863	48.931	48.79	0.14
		EA_2	31 174.941	53.009	53.00	0.01
	1_2	A_2A_1	31 055.554	0.0		
		$\mathbf{E}\mathbf{E}$	31 079.945	24.391	24.35	0.04
		A_2E	31 102.353	46.799	46.70	0.10
		EA_1	-	-	_	_
$l_{11}-2_{02}$	$\mathbf{l_1}$	A_1A_2	8 978.337	0.0		
		$\mathbf{E}\mathbf{E}$	8 959.123	-19.214	-19.16	-0.05
		A_1E	8 933.668	-44.669	-44.68	0.01
		EA_2	8 946.033	-32.304	-31.99	-0.32
	1_2	A_2A_1	8 917.192	0.0		
		$\mathbf{E}\mathbf{E}$	8 898.789	-18.403	-18.39	-0.01
		A_2E	8 874.392	-42.800	-42.70	-0.10
		EA_1	8 886.424	-30.768	-30.91	0.14
$2_{12} - 3_{03}$	1_1	A_1A_2	28 890.842	0.0		
		$\mathbf{E}\mathbf{E}$	28 870.718	-20.124	-20.26	0.14
		A_1E	28 848.524	-42.318	-42.67	0.34
		$\mathbf{EA_2}$	28 852.695	-38.147	-38.33	0.18
	1_2	A_2A_1	28 773.941	0.0		
		$\mathbf{E}\mathbf{E}$	28 754.634	-19.307	-19.41	0.11
		A_2E	28 733.355	-40.586	-40.79	0.21
		$\mathbf{EA_1}$	28 737.363	-36.578	-36.81	0.23
$3_{03} - 3_{12}$	11	A_1A_2	32 973.397	0.0		
		$\mathbf{E}\mathbf{E}$	32 999.106	25.709	25.70	0.01
		A_1E	33 023.837	50.440	50.37	0.07
		$\mathbf{EA_2}$	33 025.766	52.369	52.41	-0.04
	1_2	$\mathbf{A_2}\mathbf{A_1}$	32 848.287	0.0		
		EE	32 872.879	24.610	24.63	-0.02
		A_2E	32 896.516	48.229	48.26	-0.03
		EA_1	32 898.396	50.109	50.19	-0.08
$4_{04} - 4_{13}$	l_1	$\mathbf{A_1A_2}$	35 558.525	0.0		
		$\mathbf{E}\mathbf{E}$	35 585. 053	26.528	26.54	-0.01
		A_1E	35 611.021	52.496	52.48	0.02
		EA_2	35 612.063	53.538	53.64	-0.10
	1_2	A_2A_1	35 348.404	0.0		
		EE	35 373.746	25.342	25.46	-0.12
		A_2E	35 398.543	50.139	50.35	-0.21
		EA_1	35 399.572	51.168	51.45	-0.28

Tab. 1. Rotational transitions of $(CH_3)_2O$ in the excited torsional states $\bar{v}=l_1$ and $\bar{v}=l_2$. $\bar{\sigma}$ indicates the torsional substate $\Gamma\Gamma'$. * AA stands for A_1A_2 or A_2A_1 . Standard deviation of splittings of 0.16 MHz.

1028 Notizen

Tab. 2. Effective rotational constants of the torsional states $\tilde{v} = l_1$ and $\tilde{v} = l_2$ for $(CH_3)_2O$ calculated from lines up to J=4. The errors are standard errors of the fit.

$\tilde{v} = l_1$	Torsional symmetry species A_1A_2 . $A = 38797.34 \pm 0.30 \text{ MHz};$ $B = 10024.95 \pm 0.05 \text{ MHz};$ $C = 8867.34 \pm 0.10 \text{ MHz}.$
$\tilde{v} = 1_2$	Torsional symmetry species A_2A_1 . $A = 38770.43 \pm 0.30 \text{ MHz};$ $B = 9993.07 \pm 0.05 \text{ MHz};$ $C = 8870.13 \pm 0.10 \text{ MHz}.$

made in the Rechenzentrum der Universität Hamburg on a Telefunken TR 440 computer. The final calculations were made with the PDP 10 of the

Tab. 3. Internal rotation parameters for (CH₃)₂O. The values of the second column result from an analysis of ground state lines alone (without top-top interaction)8. The F values are different by theoretical reasons and influence the V_3 values considerably. * taken from ³. ** assumed. Errors are three times standard errors.

V_3	2654 ±2	2561	cal/mole	Co	orrelat	tion
S	59.90 ± 0.03	60.99		matrix		
V_{12}	0.0 **	_	cal/mole	s	ϑ	V_{12}'
$V_{12}{}'$	14 ± 3		cal/mole	1	.76	28
I_{α}	3.2074 *	3.2074 *	amu Ų		1	.1
$\boldsymbol{\mathit{F}}$	206.47	195.71	GHz			1
F'	-43.70	-	GHz			
ϑ	60.11 ± 0.3	57.9 ± 0.4	0			

Rechenzentrum der Universität Kiel. We gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemie.

¹ H. D. Rudolph, Z. Angew. Phys. 13, 401 [1961].

² U. Andresen and H. Dreizler, Z. angew. Phys. 30, 207 [1970].

³ U. Blukis, P. H. Kasai, and R. J. Myers, J. Chem. Phys. 38, 2753 [1963]

F. J. Lovas, NBS Washington DC, private communication.
A. Trinkaus, H. Dreizler, and H. D. Rudolph, Z. Naturforsch. 28 a, 750 [1973].

⁶ R. J. Myers and E. B. Wilson jr., J. Chem. Phys. 33, 186 [1960].

⁷ H. Dreizler, Z. Naturforsch. 16 a, 1354 [1961].

⁸ H. Lutz and H. Dreizler, Z. Naturforsch. 30a, 1782

⁹ M. Hayashi and M. Imachi, Chemistry Letters (Chem. Soc. Jap.) 1249 [1975].

¹⁰ J. R. Hoyland, J. Chem. Phys. 49, 1908 [1968].